Name and Surname **Grade/Class** : 12/..... Mathematics Teacher: ..... Hudson Park High School **GRADE 12 MATHEMATICS** Paper 2 Marks 150 **Time** : 3 hours Date 6 June 2016 <u>Examiner</u> SLT Moderator(s) **SLK** INSTRUCTIONS Illegible work, in the opinion of the marker, will earn zero marks. 1. Number your answers clearly and accurately, exactly as they appear on the question 2. paper. • Start each QUESTION at the top of a page. 3. **NB** • Leave 2 lines open between each of your answers. Fill in the details requested on the front of this Question Paper 4. **NB** and hand in your submission in the following manner: Question Paper (on top) • Answer Booklet (below) Do not staple the Question Paper and Answer Booklet together. Employ relevant formulae and show all working out. Answers alone may not be

(Non-programmable and non-graphical) Calculators may be used, unless their usage

5.

6.

7.

8.

awarded full marks.

is specifically prohibited.

## QUESTION 1 [8 marks]

1. A group of six Grade 12 Mathematics pupils was asked to blow up a balloon each and the volume of the balloon was recorded. Their Mathematics Standardised Test result for Standardised Test 1 is also known:

| Standardised Test 1 result % (x) | Volume of the balloon cm <sup>3</sup> (y) |
|----------------------------------|-------------------------------------------|
| 55                               | 4 100                                     |
| 40                               | 4 800                                     |
| 75                               | 5 000                                     |
| 80                               | 6 000                                     |
| 65                               | 3 800                                     |
| 90                               | 4 000                                     |

#### For this data:

| 1.1.   | Calculate the                                                                                                            |          |     |
|--------|--------------------------------------------------------------------------------------------------------------------------|----------|-----|
| 1.1.1. | equation of the line of best fit                                                                                         | <u>3</u> |     |
| 1.1.2. | correlation coefficient                                                                                                  | 1        | (4) |
| 1.2.   | Use (1.1.2) to comment on the trend in the data.                                                                         |          | (1) |
| 1.3.   | A pupil who achieved 85 % for Standardised Test 1 was absent on the day the pupils were asked to blow up their balloons. | ne       |     |
| 1.3.1. | Had this pupil been at school, predict the volume to which they would have blown up their balloon.                       | <u>1</u> |     |
| 1.3.2. | How reliable is the prediction in (1.3.1.)? Explain your answer in detail.                                               |          |     |
|        |                                                                                                                          | <u>2</u> | (3) |

## QUESTION 2 [ 2 marks ]

2. For a certain list of data values, where no values are repeated, the following details are known:

$$\sum_{k=1}^{35} x_k = 700$$

$$\sum_{k=1}^{35} (x_k - 20)^2 = 140$$

For the list of data values, calculate the:

2.1. mean (1)

2.2. variance (1)

## QUESTION 3 [ 11 marks ]

# 3. Given:

| Data value | Frequency |
|------------|-----------|
| x          | f         |
| 0          | 2         |
| 1          | 15        |
| 2          | 22        |
| 3          | 37        |
| 4          | 30        |
| 5          | 20        |
| 6          | 13        |
| 7          | 10        |
| 8          | 8         |
| 9          | 5         |
| 10         | 3         |

# For the given data:

| 3.1.                 | Calculate the:                                                                        |                      |          |     |
|----------------------|---------------------------------------------------------------------------------------|----------------------|----------|-----|
| 3.1.1.               | number of data values                                                                 |                      | <u>1</u> |     |
| 3.1.2.               | mean                                                                                  |                      | <u>1</u> |     |
| 3.1.3.               | standard deviation                                                                    |                      | 1        |     |
| 3.1.4.               | number of data values that lie with 0,45 standard deviations of the mean              |                      | <u>2</u> |     |
| 3.1.5.1.<br>3.1.5.2. | position of the median, and hence the value of the median                             | <u>1</u><br><u>1</u> | <u>2</u> |     |
| 3.1.6.               | position of the 4 <sup>th</sup> decile (leave your answer as a decimal, if necessary) |                      | <u>1</u> |     |
| 3.1.7.               | position of the upper quartile (leave your answer as a decimal, if necessary)         |                      | 1        | (9) |
| 3.2.                 | Use (3.1.2) and (3.1.5.2.) to comment on the skewness of the da                       | ata.                 |          | (2) |

## QUESTION 4 [ 14 marks ]

4. DE is a median of  $\triangle$  ADC. A(-10;4), C(8; -1), D(6; -8), B(b;  $\rightleftharpoons$  and F(f; -5). F is not shown.



Calculate the:

4.1. coordinates of E (2)
4.2. value of b, if D, C and B are collinear (4)
4.3. value of f, if CF = CD (6)
4.4. coordinates of K, if ACDK is a parallelogram (2)

## QUESTION 5 [ 13 marks ]

5. B is the centre of the circle passing through points A, O, D and C. The radius of the circle is 5 cm.  $\hat{C}_1 = 50^{\circ}$  and the equation of line CD is 2y - 3x = -5.



Calculate:

5.1. the area of  $\triangle$  AOB (4)
5.2.  $\widehat{D}_2$  (2)
5.3.  $\widehat{A}_2$  (3)
5.4.  $\widehat{O}_{1+2}$  (3)
5.5. the x-coordinate of B,  $x_B$  (1)

#### QUESTION 6 [ 32 marks ]

6.1. If  $\cos 18^{\circ} = m$  (where 0 < m < 1), determine the following WITHOUT THE USE OF A CALCULATOR:

6.1.1. 
$$\cos(-18^{\circ})$$
  $\frac{1}{4}$  6.1.2.  $\tan 108^{\circ}$   $\frac{4}{3}$ 

6.1.3. 
$$\cos 2208^{\circ}$$

6.1.4. 
$$\sin 9^{\circ}$$
 2 (11)

6.2. Given: 
$$\frac{\sin 2x + 1}{\cos 2x} = \frac{\cos x + \sin x}{\cos x - \sin x}$$

6.2.1. Prove the given identity. 
$$\underline{5}$$

6.2.2. For which value(s) of x will the given identity not be valid? 
$$\underline{2}$$
 (7)

6.3. Simplify fully, WITHOUT THE USE OF A CALCULATOR:

$$\frac{\cos 170^{\circ} \cos 30^{\circ} + \cos 280^{\circ} \sin 30^{\circ}}{\sin 25^{\circ} \cos 25^{\circ}}$$
 (6)

6.4. Solve for 
$$x$$
:  $3\cos 2x = 1 + 5\cos x$  (8)

## QUESTION 7 [ 7 marks ]

7. B, C and D are in the same horizontal plane. AB is a vertical tower. CB = CD = x,  $C\widehat{B}D = \theta$  and the angle of elevation of A from D is  $\beta$ .



- 7.1. Show that BD =  $2x \cos \theta$  (5)
- 7.2. Now determine an expression for AB in terms of x,  $\theta$  and  $\beta$ . Simplify your answer fully. (2)

#### QUESTION 8 [ 14 marks ]

- 8. Given:  $f(x) = -\sin x$  and  $g(x) = \cos x + 1$
- 8.1. Sketch the graphs of f and g on the same set of axes, showing all relevant details. (6)
- 8.2. Use your graphs to determine the value(s) of x for which:
- 8.2.1. f is decreasing
- 8.2.2.  $\cos x + 1 + \sin x = 2$
- 8.2.3.  $(-\sin x)(\cos x + 1) \ge 0$
- 8.2.4.  $\cos x + 1 + \sin x > 0$   $\underline{1}$  (6)
- 8.3. What is the maximum value of:  $2\sin^2 x \sin x + 2\cos^2 x$  (2)

#### QUESTION 9 [ 13 marks ]

9.1. O is the centre of the circle and ABC is a tangent.



Prove the theorem which states that:  $\widehat{ABD} = \widehat{DEB}$  (4)

# 9.2. AB and AC are tangents to the circle, AF // CD and $\widehat{B}_1 = 40^{\circ}$ :



| 9.2.1. | Calculate $\hat{F}_1$                     | <u>3</u> |     |
|--------|-------------------------------------------|----------|-----|
| 9.2.2. | Prove that ABFC is a cyclic quadrilateral | <u>4</u> |     |
| 9.2.3. | Prove that AF bisects BFC                 | <u>2</u> | (9) |

## QUESTION 10 [ 8 marks ]

ABC is a tangent to the circle with centre O,  $\widehat{B}_1=25^\circ$  and DB = IB : 10.



Calculate:

Ĥ

10.3.

10.1. 
$$\widehat{O}_1$$
 (4)
10.2.  $\widehat{G}$  (2)
10.3.  $\widehat{H}$  (2)

# QUESTION 11 [ 4 marks ]

# 11. BC: CD = 7:2, AB // DE and BE // DF:



Calculate:  $\frac{AE}{FC}$  (4)

## QUESTION 12 [ 24 marks ]

AE = EC, O is the centre of the circle whose radius is r, 12.1. OE = 2 and AB =  $\sqrt{6}$ :



- <u>5</u> Prove that  $\triangle$  ABE ///  $\triangle$  DBA 12.1.1. <u>1</u> State the length of BE in terms of r12.1.2. <u>5</u> (11)
- Calculate the value of r12.1.3.

12.2. BC = AE = 3, AB = 2 and EF = 4.5:



Prove that:

$$12.2.2. \qquad \frac{AB}{AC} = \frac{BE}{CF}$$

12.2.3. 
$$\frac{AH \cdot BG}{HC} = \frac{BE \cdot AC}{CF}$$

#### INFORMATION SHEET

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni)$$

$$A = P(1-ni)$$

$$A = P(1-i)^n$$

$$A = P(1+i)^n$$

$$T_n = a + (n-1)d$$

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1} \quad ; r \neq$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
 ;  $r \neq 1$   $S_{\infty} = \frac{a}{1 - r}$ ;  $-1 < r < 1$ 

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$P = \frac{x\left[1 - \left(1 + i\right)^{-n}\right]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$v = mx + c$$

$$y - y_1 = m(x - x_1)$$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \tan \theta$$

$$(x-a)^2 + (y-b)^2 = r^2$$

In 
$$\triangle ABC$$
:  $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ 

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

$$area \Delta ABC = \frac{1}{2}ab.\sin C$$

$$\sin(\alpha + \beta) = \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$

$$\sin(\alpha - \beta) = \sin\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin 2\alpha = 2\sin \alpha.\cos \alpha$$

$$\overline{x} = \frac{\sum fx}{n}$$

$$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$\hat{y} = a + bx$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$